On Length Spectrum Metrics and Weak Metrics on Teichmüller Spaces of Surfaces with Boundary
نویسنده
چکیده
We define and study metrics and weak metrics on the Teichmüller space of a surface of topologically finite type with boundary. These metrics and weak metrics are associated to the hyperbolic length spectrum of simple closed curves and of properly embedded arcs in the surface. We give a comparison between the defined metrics on regions of Teichmüller space which we call ε0-relative ǫ-thick parts, for ǫ > 0 and ε0 ≥ ǫ > 0. AMS Mathematics Subject Classification: 32G15 ; 30F30 ; 30F60.
منابع مشابه
Length spectra and the Teichmüller metric for surfaces with boundary
We consider some metrics and weak metrics defined on the Teichmüller space of a surface of finite type with nonempty boundary, that are defined using the hyperbolic length spectrum of simple closed curves and of properly embedded arcs, and we compare these metrics and weak metrics with the Teichmüller metric. The comparison is on subsets of Teichmüller space which we call “ε0-relative ǫ-thick p...
متن کاملGeodesic Length Functions and Teichmüller Spaces
Abstract Given a compact orientable surface with finitely many punctures Σ, let S(Σ) be the set of isotopy classes of essential unoriented simple closed curves in Σ. We determine a complete set of relations for a function from S(Σ) to R to be the geodesic length function of a hyperbolic metric with geodesic boundary and cusp ends on Σ. As a consequence, the Teichmüller space of hyperbolic metri...
متن کاملSome metrics on Teichmüller spaces of surfaces of infinite type
Unlike the case of surfaces of topologically finite type, there are several different Teichmüller spaces that are associated to a surface of topological infinite type. These Teichmüller spaces first depend (set-theoretically) on whether we work in the hyperbolic category or in the conformal category. They also depend, given the choice of a point of view (hyperbolic or conformal), on the choice ...
متن کاملOn Teichmüller Space of Surface with Boundary
We characterize hyperbolic metrics on compact triangulated surfaces with boundary using a variational principle. As a consequence, a new parameterization of the Teichmüller space of compact surface with boundary is produced. In the new parameterization, the Teichmüller space becomes an open convex polytope. It is conjectured that the Weil-Petersson symplectic form can be expressed explicitly in...
متن کاملFixed point of generalized contractive maps on S^{JS}- metric spaces with two metrics
In this paper we prove existence of fixed point theorems for Z-contractive map, Geraghty type contractive map and interpolative Hardy-Rogers type contractive mapping in the setting of SJS- metric spaces with two metrics. Examples are constructed to high light the significance of newly obtained results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009